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Anderson localization

Metal Anderson insulator

Anderson, PR 109, 1492 (1958)



Absence of transport versus localization

Green’s function Eigenmodes

Transport Localization

Localized modes do not contribute to transport

No diffusion Localization?



Can we do the same with “classical” waves?

Source
of sound

Scatterers

S. John, PRL 53, 2169 (1984)
P.W. Anderson, Philos. Mag. B 52, 505 (1985)



Yes we can! …in 1D and 2D

2D: Weaver, Wave Motion 12, 129 (1990)
Dalichaouch et al., Nature 354, 53 (1991) 
Schwartz et al., Nature 446, 52 (2007)
…

Quasi-1D: Chabanov et al., Nature 404, 850 (2000)

Figure from Cherroret et al., PRB 80, 045118 (2009)



No Anderson localization of sound
by balloons…

Hu et al., Nature Physics 4, 945 (2008)

… but sound can be localized
by stronger scattering objects

(aluminum beads)
that are densely packed

Yes we can! A real challenge in 3D



Anderson localization of elastic waves in 3D

Cobus et al., PRL 116, 193901 (2016)



A minimal model of disordered media

Our model simplerReal samples complex

Resonant
point
scatterers
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Atom is a realistic resonant point scatterer

Two-level atom

Resonant
point
scatterers



A scalar photon in a cloud of atoms

1 atom excited
no propagating photons

all atoms in the ground state
+ a photon in the mode k

2 atoms excited + a (virtual) photon in the mode k



A scalar photon in a cloud of atoms

Two ways to deal with the problem

Waves (light) scattered
by the scatterers (atoms)

Scatterers (atoms) coupled
by waves (light)

Equations to analyze:
wave equation with

random material properties
(dielectric constant)

Equations to analyze:
dynamic equations for
identical nodes with
random couplings



Green’s matrix

Prasad & Glauber, PRA 31, 1583 (1985)
Svidzinsky & Chang, PRA 77, 043833 (2008)

Friedberg & Manassah, Phys. Lett. A 372, 2514 (2008)



Structure of the Green’s matrix



Structure of the Green’s matrix



Quasi-modes of the system



Green’s matrix for            
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Green’s matrix for            



Extended

Localized

Goetschy & Skipetrov, EPL 96, 34005 (2011)

Green’s matrix for            



Eigenvalue density for              

Goetschy & Skipetrov, PRE 84, 011150 (2011)



Goetschy & Skipetrov, PRE 84, 011150 (2011)

Eigenvalue density for              



Breakdown of analytic theory for                

Low density of atoms High density of atoms

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Long-lived
states

Analytic 
boundary of
eigenvalue 
density 

Density of eigenvalues



Inverse participation ratio (IPR)



Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms 

Skipetrov & Sokolov, PRL 112, 023905 (2014)



Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms 

Skipetrov & Sokolov, PRL 112, 023905 (2014)



Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms 

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Band of
localized
states



Dimensionless conductance

Spectrum of a disordered system
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Scaling theory of Anderson localization

Abrahams et al., PRL 42, 673 (1979)

Main idea: Study how g evolves with sample size R

If the modes are extended, g grows with R

If the modes are localized, g decreases with R

At the critical point g = gc is independent of R



Scaling theory of Anderson localization

Main idea: Study how g evolves with sample size R

If the modes are extended, g grows with R

If the modes are localized, g decreases with R

At the critical point g = gc is independent of R

> 0 if extended eigenstates

< 0 if localized eigenstates

Single-parameter scaling hypothesis

Abrahams et al., PRL 42, 673 (1979)



Scaling theory of Anderson localization

Abrahams et al., PRL 42, 673 (1979):

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Random Green’s matrix model (d=3):

Localization
transition

> 0 if extended eigenstates

< 0 if localized eigenstates

= 0 at the critical point



Critical behavior around the mobility edge



Thouless conductance & scaling

Skipetrov, PRB 94, 064202 (2016)



Scaling of moments of lng

Skipetrov, PRB 94, 064202 (2016)

Extended
states:

RTE,
diffusion

Localized
states:
no RTE,

no
diffusion

Extended
states:
RTE,
diffusion



But… No crossing

critical
point

No single-
parameter
scaling

Skipetrov, PRB 94, 064202 (2016)

Scaling of moments of lng



Distribution of conductance

Skipetrov, PRB 94, 064202 (2016)



Single-parameter scaling

Slevin, Markos, Ohtsuki, PRB 67, 155106 (2003)



Finite-size scaling of percentiles

Skipetrov, PRB 94, 064202 (2016)



Best-fit parameters

Skipetrov, PRB 94, 064202 (2016)



Single-parameter scaling: a posteriori check

extended
branch

localization
branch

Skipetrov, PRB 94, 064202 (2016)



Anderson localization of light

Pioneering theoretical works: John, PRL 53, 2169 (1984)
Anderson, Philos. Mag. B 52, 505 (1985)

Experiments inconclusive: Wiersma et al., Nature 390, 671 (1997)
Sperling et al., Nat. Photonics 7, 48 (2013)



Light is a vector wave

Propagation
direction

Electromagnetic waves“Schrödinger” waves
or sound

Propagation
direction



Familiar textbook Hamiltonian…

isolated atoms free electromagnetic field

atom-field interaction
in the dipole approximation

contact term

Cohen-Tannoudji, Dupont-Roc & Grynberg,
Photons and Atoms: Introduction to Quantum Electrodynamics (1992)

Morice, Castin & Dalibard, PRA 51, 3896 (1995)



Green’s matrix for light



Green’s function in different bases



Structure of the Green’s matrix



Structure of the Green’s matrix



Probability density of eigenvalues

Skipetrov & Sokolov, PRL 112, 023905 (2014)

?



IPR for light

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms 

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Scalar



IPR for light

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms 

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Scalar



No Anderson localization for light in 3D

Skipetrov & Sokolov, PRL 112, 023905 (2014)

Scalar model Vector model

Localization
transition

No localization
transition



Anderson localization of light
in a magnetic field



Zeeman effect

Magnetic field suppresses
near-field coupling
between atoms by
longitudinal fields

[Afrousheh et al., PRA 73,
063403 (2006)]



The Hamiltonian

Coupling of atoms with a magnetic field



Green’s matrix in a magnetic field

see also Pinheiro et al., Acta. Phys. Pol. A 105, 339 (2004)



Eigenvalues in a strong magnetic field

Skipetrov & Sokolov, PRL 114, 053902 (2015)

Light interacting
with Dm = 1 transition

Light interacting
with Dm = 0 transition

Light interacting
with Dm = -1 transition

Low density

High density



Average inverse participation ratio

Light interacting
with Dm = 1 transition

Light interacting
with Dm = 0 transition

Light interacting
with Dm = -1 transition

Low
density

High
density

IPR

Localized states

Skipetrov & Sokolov, PRL 114, 053902 (2015)



Scaling with sample size

Light interacting
with Dm = 1 transition

Light interacting
with Dm = 0 transition

Light interacting
with Dm = -1 transition

Skipetrov & Sokolov, PRL 114, 053902 (2015)
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Work in progress…



Anderson localization of elastic waves

Image from Le Journal du CNRS (December 2008)



Elastic wave equation

mechanical
displacement
in the direction i

excitation
elasticity
tensor

Lamé parameters
compressional waves: shear waves:



Point-scatterer model

Real sample Model

Identical aluminum beads
with many resonances 

Identical point scatterers
with a single resonance

Hu et al., Nature Physics 4, 945 (2008)



Elastic Green’s function



Elastic Green’s function in the near field



Eigenvalues: scalar vs elastic

Work in progress…



Eigenvalues: evolution with sample size

Work in progress…
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Scaling for elastic waves

Work in progress…
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Conclusions

• Wave scattering by random ensembles of resonant
point scatterers is naturally described by Euclidean
random matrix (ERM) models

• ERM models can be used to study Anderson
localization transitions with account for
peculiarities specific for a particular type of waves:
scalar vs vector waves, light vs elastic waves, etc.

• Anderson localization of light by atoms is possible
only in the presence of a strong magnetic field and
that the localization transition for elastic waves is
similar to that of scalar waves  

• More developments of analytic approaches to ERM
are necessary for further progress



Thank you for your attention!


