

Anderson transitions in Euclidean random matrix models

Sergey E. Skipetrov

Laboratoire de Physique et Modélisation des Milieux Condensés CNRS and Université Grenoble Alpes, France

Anderson localization

Metal

current I = GV

Conductance G = 1/R

High T

Few impurities

Anderson insulator

current $I \propto e^{-L/\xi} \to 0$

$$G \propto e^{-L/\xi} \to 0$$

 ξ — localization length

$$T \to 0$$

Metal-insulator

transition in 3D

Add impurities

Anderson, PR 109, 1492 (1958)

Absence of transport versus localization

Green's function

Eigenmodes

$$\left\{ \nabla^2 + \frac{2m}{\hbar^2} \left[E - V(\mathbf{r}) \right] \right\} \frac{G(\mathbf{r}, \mathbf{r'})}{\left\{ \nabla^2 + \frac{2m}{\hbar^2} \left[E_n - V(\mathbf{r}) \right] \right\} \frac{\psi_n(\mathbf{r})}{\hbar} = 0$$

Localization

Localized modes do not contribute to transport

No diffusion

Localization

Can we do the same with "classical" waves?

Yes we can! ...in 1D and 2D

Quasi-1D: Chabanov et al., Nature **404**, 850 (2000)

Figure from Cherroret et al., PRB **80**, 045118 (2009)

2D: Weaver, Wave Motion **12**, 129 (1990) Dalichaouch et al., Nature **354**, 53 (1991) Schwartz et al., Nature **446**, 52 (2007)

. . .

Yes we can! A real challenge in 3D

No Anderson localization of sound by balloons...

... but sound can be localized by **stronger** scattering objects (aluminum beads) that are **densely packed**

Hu et al., Nature Physics 4, 945 (2008)

Anderson localization of elastic waves in 3D

 ξ — localization or correlation length

L — sample thickness

Cobus et al., PRL **116**, 193901 (2016)

A minimal model of disordered media

Resonant

scatterers

point

 Γ_0

Real samples complex

Our model simpler

Atom is a realistic resonant point scatterer

A scalar photon in a cloud of atoms

1 atom excited no propagating photons

all atoms in the ground state + a photon in the mode **k**

$$|\psi(t)\rangle = \sum_{j=1}^{N} \frac{\beta_{j}(t)|(N-1):g,j:e\rangle|0_{R}\rangle + \sum_{\mathbf{k}} \gamma_{\mathbf{k}}(t)|N:g\rangle|\mathbf{k}\rangle$$

$$+ \sum_{i< j}^{N} \sum_{\mathbf{k}} \alpha_{ij\mathbf{k}}(t)|(N-2):g,i:e,j:e\rangle|\mathbf{k}\rangle$$

2 atoms excited + a (virtual) photon in the mode k

A scalar photon in a cloud of atoms

Waves (light) scattered by the scatterers (atoms)

Equations to analyze:

wave equation with random material properties (dielectric constant) Scatterers (atoms) coupled by waves (light)

Equations to analyze:

dynamic equations for identical nodes with random couplings

Green's matrix

Euclidean random

matrix

Green's matrix G describes propagation of light between pairs of atoms $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$

$$\boldsymbol{\beta} = \{\beta_1(t), \beta_2(t), \dots, \beta_N(t)\}\$$

$$\frac{d\boldsymbol{\beta}}{dt} = iG\boldsymbol{\beta}(t)$$

$$G_{ij} = i\delta_{ij} + (1 - \delta_{ij}) \frac{e^{ik_0 r_{ij}}}{k_0 r_{ij}}$$

$$k_0 = \frac{\omega_0}{c}$$

Prasad & Glauber, PRA **31**, 1583 (1985) Svidzinsky & Chang, PRA **77**, 043833 (2008) Friedberg & Manassah, Phys. Lett. A **372**, 2514 (2008)

Structure of the Green's matrix

One-atom dynamics:

 $G_{jj} = i$ describes the decay $e^{-\Gamma_0 t}$ of the excitation of an isolated excited atom

Structure of the Green's matrix

Pairwise coupling between atoms 1 & 2:

 $G_{12} = e^{ik_0r_{12}}/k_0r_{12}$ is the field at position 2 due to a source at position 1

Quasi-modes of the system

Green's matrix G describes propagation of light between pairs of atoms $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$

$$G\psi_n = \Lambda_n \psi_n$$

Eigenvectors:

$$\boldsymbol{\psi}_n = \{\psi_n^1, \psi_n^2, \dots, \psi_n^N\}$$

Eigenvalues:

$$\Lambda_n = \text{Re}\Lambda_n + i \text{Im}\Lambda_n$$
Frequency Decay rate of the mode

Green's matrix for N=2

$$G_{ij} = i\delta_{ij} + (1 - \delta_{ij}) \frac{e^{ik_0|\mathbf{r}_i - \mathbf{r}_j|}}{k_0|\mathbf{r}_i - \mathbf{r}_j|}$$
$$\widehat{G}\psi_n = \Lambda_n \psi_n$$

$$\begin{array}{c|c} \Delta \mathbf{r} \\ \hline & \mathbf{r}_1 \\ \hline \end{array}$$

$$\widehat{G} = \begin{pmatrix} i & \frac{e^{ik_0\Delta r}}{k_0\Delta r} \\ \frac{e^{ik_0\Delta r}}{k_0\Delta r} & i \end{pmatrix}$$

$$\Lambda_{1,2} = i \pm G_{12}$$

 $\psi_{1,2} = (\pm 1, 1)$

Green's matrix for N=2

$$G_{ij} = i\delta_{ij} + (1 - \delta_{ij}) \frac{e^{ik_0|\mathbf{r}_i - \mathbf{r}_j|}}{k_0|\mathbf{r}_i - \mathbf{r}_j|}$$
 $\widehat{G}\psi_n = \Lambda_n \psi_n$

$$\Lambda_{1,2} = i \pm G_{12}$$
 $\psi_{1,2} = (\pm 1, 1)$

Green's matrix for $N\gg 1$

Goetschy & Skipetrov, EPL 96, 34005 (2011)

Eigenvalue density for $N\gg 1$

Density of eigenvalues of \widehat{G} (numerical)

Borderline of the domain of existence of eigenvalues of \hat{G} (analytical)

$$G_{ij} = i\delta_{ij} + (1 - \delta_{ij}) \frac{e^{ik_0|\mathbf{r}_i - \mathbf{r}_j|}}{k_0|\mathbf{r}_i - \mathbf{r}_j|}$$

 $\widehat{G}\psi_n = \Lambda_n \psi_n$

 $N\gg 1$ points in a sphere:

Eigenvalue density for $N\gg 1$

Breakdown of analytic theory for Im $\wedge \ll 1$

Density of eigenvalues

Inverse participation ratio (IPR)

Small IPR $\sim 1/N \ll 1$

Appreciable IPR $\sim 1/M \gg 1/N$

Large IPR $\sim 1/2$

$$\text{IPR}_n = \frac{\sum\limits_{i=1}^N |\psi_n(\mathbf{r}_i)|^4}{\left(\sum\limits_{i=1}^N |\psi_n(\mathbf{r}_i)|^2\right)^2} \sim \frac{1}{M} \qquad \text{for a state (mode)} \\ \frac{\sum\limits_{i=1}^N |\psi_n(\mathbf{r}_i)|^2}{\left(\sum\limits_{i=1}^N |\psi_n(\mathbf{r}_i)|^2\right)^2} \sim \frac{1}{M} \qquad \text{localized on } M \text{ atoms}$$

Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms

Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms

Skipetrov & Sokolov, PRL **112**, 023905 (2014)

Evolution of IPR with increasing density

Eigenvalue domain boundary from the diffusion theory
Subradiant states localized on 2 closely located atoms

Dimensionless conductance

Spectrum of a disordered system

$$g < 1 \mid \delta\omega \sim \text{Im}\Lambda$$
 — "mode width"

$$\Delta\omega\sim \mathrm{Re}\Lambda_{n+1}-\mathrm{Re}\Lambda_n$$
 "mode spacing"

$$g=rac{\delta\omega}{\Delta\omega}$$
 - Thouless parameter (dimensionless conductance)

The same with mode widths x 10

Thouless criterion of Anderson localization:

Scaling theory of Anderson localization

Main idea: Study how g evolves with sample size R If the modes are extended, g grows with R If the modes are localized, g decreases with R At the critical point $g = g_c$ is independent of R

Scaling theory of Anderson localization

Main idea: Study how g evolves with sample size R

If the modes are extended, g grows with R

If the modes are localized, g decreases with R

At the critical point $g = g_c$ is independent of R

Single-parameter scaling hypothesis

$$\beta(g) = \frac{\partial \ln g}{\partial \ln k_0 R}$$

- > 0 if extended eigenstates
- < 0 if localized eigenstates

Abrahams et al., PRL **42**, 673 (1979)

Scaling theory of Anderson localization

Abrahams et al., PRL **42**, 673 (1979):

$$\beta(g) = \frac{\partial \ln g}{\partial \ln k_0 R}$$

- > 0 if extended eigenstates
- < 0 if localized eigenstates
- = 0 at the critical point

Skipetrov & Sokolov, PRL **112**, 023905 (2014)

Critical behavior around the mobility edge

Thouless conductance & scaling

N scatterers at density ρ

Eigenvalues of the Green's matrix

Thouless conductance

Now we are going to study statistical properties of $g(\omega)$ at high $\rho = 0.15k_0^3$ at which localized states are expected

Scaling of moments of Ing

Skipetrov, PRB **94**, 064202 (2016)

Scaling of moments of Ing

Distribution of conductance

Percentile g_q :

$$q = \int_{0}^{g_q} p(g)dg$$

Skipetrov, PRB 94, 064202 (2016)

Single-parameter scaling

$$R$$
 — system size
$$\ln g_q = F_q(R/\xi) \qquad \xi \propto \frac{1}{\left({\rm Re}\Lambda - {\rm Re}\Lambda_c\right)^\nu} \\ - {\rm localization} \\ {\rm length}$$

$$\ln g_q = F_q(R/\xi) = F_q[R(\text{Re}\Lambda - \text{Re}\Lambda_c)^{\nu}]$$
$$= F_q[R^{1/\nu}(\text{Re}\Lambda - \text{Re}\Lambda_c)] \longrightarrow F_q(\psi, \phi)$$

Relevant scaling variable:

$$\psi = R^{1/\nu} u(\text{Re}\Lambda - \text{Re}\Lambda_c), \quad u(x) = u_1 x + u_2 x^2 + \dots$$

Irrelevant scaling variable:

$$\phi = R^{-y}v(\operatorname{Re}\Lambda - \operatorname{Re}\Lambda_c), \quad v(x) = v_0 + v_1x + v_2x^2 + \dots$$

Slevin, Markos, Ohtsuki, PRB 67, 155106 (2003)

Finite-size scaling of percentiles

Skipetrov, PRB **94**, 064202 (2016)

Best-fit parameters

The value of critical exponent following from the fits is close to $\nu \simeq 1.57$ expected for the 3D orthogonal symmetry class.

We conclude that the observed transition is likely to belong to the same symmetry class as the **Anderson transition in a system of spinless electrons**.

Single-parameter scaling: a posteriori check

Data for different N all fall on a single line $\ln g_q = F_q(R/\xi)$

R — sample size

 ξ — localization (correlation) length

Skipetrov, PRB 94, 064202 (2016)

Anderson localization of light

Pioneering theoretical works: John, PRL **53**, 2169 (1984)
Anderson, Philos. Mag. B **52**, 505 (1985)

Experiments inconclusive: Wiersma et al., Nature **390**, 671 (1997)

Sperling et al., Nat. Photonics **7**, 48 (2013)

Light is a vector wave

"Schrödinger" waves or sound

$\begin{array}{ccc} \psi(\mathbf{r},t) & \mathbf{k} \\ & & \\ &$

Electromagnetic waves

Familiar textbook Hamiltonian...

isolated atoms

free electromagnetic field

$$\hat{H} = \sum_{i=1}^{N} \sum_{m=-1}^{1} \hbar \omega_0 |e_{im}\rangle \langle e_{im}| + \sum_{\mathbf{s}\perp\mathbf{k}} \hbar ck \left(\hat{a}_{\mathbf{k}\mathbf{s}}^{\dagger} \hat{a}_{\mathbf{k}\mathbf{s}} + \frac{1}{2}\right)$$

$$- \sum_{i=1}^{N} \hat{\mathbf{D}}_i \cdot \hat{\mathbf{E}}(\mathbf{r}_i) + \frac{1}{2\epsilon_0} \sum_{i\neq j}^{N} \hat{\mathbf{D}}_i \cdot \hat{\mathbf{D}}_j \delta(\mathbf{r}_i - \mathbf{r}_j)$$

atom-field interaction in the dipole approximation

contact term

Cohen-Tannoudji, Dupont-Roc & Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (1992) Morice, Castin & Dalibard, PRA **51**, 3896 (1995)

Green's matrix for light

Green's matrix G describes propagation of light between pairs of atoms $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$

$$G_{e_{im}e_{jm'}} = i\delta_{e_{im}e_{jm'}} - \frac{2}{\Gamma_{0}} (1 - \delta_{e_{im}e_{jm'}}) \sum_{\mu,\nu} d^{\mu}_{e_{im}g_{i}} d^{\nu}_{g_{j}e_{jm'}} \frac{e^{ik_{0}r_{ij}}}{\hbar r_{ij}^{3}}$$

$$\times \left\{ \delta_{\mu\nu} \left[1 - ik_{0}r_{ij} - (k_{0}r_{ij})^{2} \right] - \frac{r_{ij}^{\mu}r_{ij}^{\nu}}{r_{ij}^{2}} \left[3 - 3ik_{0}r_{ij} - (k_{0}r_{ij})^{2} \right] \right\}$$

$$d_{e_{im}g_{i}} = \langle J_{e}m | \hat{\mathbf{D}}_{i} | J_{g}0 \rangle$$

$$(3N \times 3N \text{ matrix})$$

Green's function in different bases

$$G_{\mu\nu}(\mathbf{r}) = \frac{3}{2} \frac{e^{ik_0r}}{k_0r} \left[P(ik_0r)\delta_{\mu\nu} + Q(ik_0r)\frac{r_{\mu}r_{\nu}}{r^2} \right]$$

$$\mu, \nu = x, y, z$$

$$P(x) = 1 - 1/x + 1/x^2$$
, $Q(x) = -1 + 3/x - 3/x^2$

linear basis

$$\mathbf{d}_m = \langle J_e m | \hat{\mathbf{D}} | J_g 0 \rangle$$

$$\bigcirc \qquad \bigcirc \qquad \longrightarrow \qquad \bigcirc$$

$$n = -1 + 1$$

Structure of the Green's matrix

$egin{pmatrix} i \ 0 \ 0 \ G_{21}^{xx} \ G_{21}^{yx} \ G_{21}^{zx} \end{pmatrix}$	$0 \\ i \\ 0 \\ G_{21}^{xy} \\ G_{21}^{yy} \\ G_{21}^{zy}$	$0 \ 0 \ i$ G_{21}^{xz} G_{21}^{yz} G_{21}^{zz}	$G_{12}^{xx} \ G_{12}^{yx} \ G_{12}^{zx} \ i \ 0 \ 0$	G_{12}^{xy} G_{12}^{yy} G_{12}^{zy} 0 i 0	G_{12}^{xz} G_{12}^{yz} G_{12}^{zz} 0 0 i	 G_{1N}^{xx} G_{1N}^{yx} G_{1N}^{zx} \cdots	G_{1N}^{xy} G_{1N}^{yy} G_{1N}^{zy} \dots	G_{1N}^{xz} G_{1N}^{yz} G_{1N}^{zz} \cdots
G_{N1}^{xx} G_{N1}^{yx} G_{N1}^{zx}	$G_{N1}^{xy} \ G_{N1}^{yy} \ G_{N1}^{zy}$	$G_{N1}^{xz} \ G_{N1}^{yz} \ G_{N1}^{zz}$				 $\begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}$	0 i 0	$\begin{pmatrix} 0 \\ 0 \\ i \end{pmatrix}$

One-atom dynamics:

Excitation of an isolated excited atom decays as $e^{-\Gamma_0 t}$

Structure of the Green's matrix

$\begin{pmatrix} i \\ 0 \\ 0 \\ G_{21}^{xx} \\ G_{21}^{yx} \\ G_{21}^{zx} \\ G_{21}^{zx} \end{pmatrix}$	$0 \\ i \\ 0 \\ G_{21}^{xy} \\ G_{21}^{yy} \\ G_{21}^{zy}$	$0 \\ i \\ G_{21}^{xz} \\ G_{21}^{yz} \\ G_{21}^{zz}$	G_{12}^{xx} G_{12}^{yx} G_{12}^{zx} i 0 0	G_{12}^{xy} G_{12}^{yy} G_{12}^{zy} 0 i 0	G_{12}^{xz} G_{12}^{yz} G_{12}^{zz} 0 0 i	 G_{1N}^{xx} G_{1N}^{yx} G_{1N}^{zx} \cdots	G_{1N}^{xy} G_{1N}^{yy} G_{1N}^{zy} \cdots	$G_{1N}^{xz} \setminus G_{1N}^{yz} \subset G_{1N}^{zz} \subset G_{1N}^{zz}$
G_{N1}^{xx} G_{N1}^{yx} G_{N1}^{zx}	$G_{N1}^{xy} \ G_{N1}^{yy} \ G_{N1}^{zy}$	$G_{N1}^{xz} \ G_{N1}^{yz} \ G_{N1}^{zz}$				 i 0 0	0 i 0	$\left. egin{array}{c} 0 \\ 0 \\ i \end{array} ight)$

Pairwise coupling between atoms 1 & 2:

 G_{12}^{xy} is the y component of the field at position 2 due to a dipole oscillating along x at position 1

Probability density of eigenvalues

IPR for light

Eigenvalue domain boundary from the diffusion theorySubradiant states localized on 2 closely located atoms

IPR for light

Eigenvalue domain boundary from the diffusion theorySubradiant states localized on 2 closely located atoms

No Anderson localization for light in 3D

Explanation stems from near-field effects:

$$G_{ extsf{Scalar}}(\mathbf{r})|_{r o 0} \propto rac{1}{r}$$
 $\widehat{G}_{ extsf{EM}}(\mathbf{r})|_{r o 0} \propto rac{1}{r^3}$

Skipetrov & Sokolov, PRL **112**, 023905 (2014)

Anderson localization of light in a magnetic field

Zeeman effect

The Hamiltonian

Coupling of atoms with a magnetic field

Green's matrix in a magnetic field

$$G_{e_{im}e_{jm'}} = (i - 2m\Delta) \, \delta_{e_{im}e_{jm'}} - \frac{2}{\hbar\Gamma_0} (1 - \delta_{e_{im}e_{jm'}})$$

$$\times \sum_{\mu,\nu} d^{\mu}_{e_{im}g_i} d^{\nu}_{g_j e_{jm'}} \frac{e^{ik_0 r_{ij}}}{r^3_{ij}}$$

$$\times \left\{ \delta_{\mu\nu} \left[1 - ik_0 r_{ij} - (k_0 r_{ij})^2 \right] \right\}$$

$$- \frac{r^{\mu}_{ij} r^{\nu}_{ij}}{r^2_{ij}} \left[3 - 3ik_0 r_{ij} - (k_0 r_{ij})^2 \right] \right\}$$

$$\Delta = g_e \mu_B B / \hbar \Gamma_0$$

$$\mathbf{d}_{e_{im}g_i} = \langle J_e m | \hat{\mathbf{D}}_i | J_g 0 \rangle$$

see also Pinheiro et al., Acta. Phys. Pol. A 105, 339 (2004)

Eigenvalues in a strong magnetic field

Skipetrov & Sokolov, PRL 114, 053902 (2015)

Average inverse participation ratio

Skipetrov & Sokolov, PRL 114, 053902 (2015)

Scaling with sample size

Finite-size scaling of percentiles

Anderson localization of elastic waves

Image from Le Journal du CNRS (December 2008)

Elastic wave equation

compressional waves:

shear waves:

Point-scatterer model

Elastic Green's function

$$\widehat{G}(\mathbf{r}) = \frac{k_{\alpha}}{4\pi(\lambda + 2\mu)} \times \left\{ \frac{e^{ik_{\alpha}r}}{3k_{\alpha}r} \left[\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\alpha}r} + \frac{3}{(k_{\alpha}r)^{2}} \right) - \left(\frac{\alpha}{\beta} \right)^{3} \frac{e^{ik_{\beta}r}}{3k_{\beta}r} \left[-2\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\beta}r} + \frac{3}{(k_{\beta}r)^{2}} \right) \right\}$$

$$k_{lpha} = rac{\omega}{lpha}$$
, $k_{eta} = rac{\omega}{eta}$, $\widehat{r} = rac{\mathbf{r}}{r}$

Typically, $\alpha > \beta$ ($\alpha/\beta \simeq 2$ for aluminium)

Equipartition principle:

$$\frac{\langle \text{Energy of shear waves} \rangle}{\langle \text{Enerfy of compressional waves} \rangle} = 2 \left(\frac{\alpha}{\beta} \right)^3 > 1$$

Elastic Green's function in the near field

$$\widehat{G}(\mathbf{r}) = \frac{k_{\alpha}}{4\pi(\lambda + 2\mu)} \times \left\{ \frac{e^{ik_{\alpha}r}}{3k_{\alpha}r} \left[\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\alpha}r} + \frac{3}{(k_{\alpha}r)^{2}} \right) - \left(\frac{\alpha}{\beta} \right)^{3} \frac{e^{ik_{\beta}r}}{3k_{\beta}r} \left[-2\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\beta}r} + \frac{3}{(k_{\beta}r)^{2}} \right) \right\}$$

Near-field behavior:

$$|\widehat{G}(\mathbf{r})|_{r\to 0} = -\frac{1}{8\pi\mu} \left(1 - \frac{\beta^2}{\alpha^2}\right) \frac{1 - 3\widehat{\mathbf{r}} \otimes \widehat{\mathbf{r}}}{r} \propto \frac{1}{r}$$

Similar to the scalar case and different from the electromagnetic one:

$$\left.\widehat{G}_{\mathsf{EM}}(\mathbf{r})\right|_{r\to 0}\propto rac{1}{r^3}$$

Eigenvalues: scalar vs elastic

Eigenvalues: evolution with sample size

$$\rho/k_0^3 = 0.15$$
$$\alpha/\beta = 2$$

Scaling for elastic waves

Average ln of conductance

First percentile of conductance

$$\rho/k_0^3 = 0.15$$
$$\alpha/\beta = 2$$

Finite-size scaling of percentiles

Work in progress...

Conclusions

- Wave scattering by random ensembles of resonant point scatterers is naturally described by Euclidean random matrix (ERM) models
- ERM models can be used to study **Anderson localization transitions** with account for peculiarities specific for a particular type of waves: scalar vs vector waves, light vs elastic waves, etc.
- Anderson localization of light by atoms is possible only in the presence of a strong magnetic field and that the localization transition for elastic waves is similar to that of scalar waves
- More developments of analytic approaches to ERM are necessary for further progress

Thank you for your attention!